A reader of our How It’s Made articles asked if we could share our knowledge about recycling. As a result, we adapted our How It’s Made article this month to an article titled “How It’s Done.”

In recognition of National Recycling Day on November 15, this edition will focus on what happens in a recycling facility. Before (or after) you read on, check out an earlier article we posted to help you understand just What Can Be Recycled.

As you read through the process below, keep in mind that states and cities vary in their abilities to recycle. However, the general process outlined here can be followed for mixed material recycling centers.

How is Recycling Done (1)

Step 1: Collection

Recyclables are collected from curbside or drop-off locations then delivered to the recycling/recovery facility.

Step 2: Facility Arrival

The trucks unload recyclables into a yard or storage area.

Heavy equipment pushes the material onto a conveyor belt or into a hopper which then feeds a conveyor belt.

Step 3: Presort

In this area, workers manually remove materials that are not recyclable or would damage the facility equipment.

Examples include: dirty paper/cardboard, scrap metal, plastic bags, bulky & oversized plastics, e-waste, hoses, toys etc.

Step 4: Screening

Throughout the entire process, large rollers screen out materials.  These rollers are essentially augers with blades. The build, size, and spacing of the blades pushes forward desired recyclable materials and undesired materials downward.

Often, the first material screened is large cardboard. These screens can also filter out materials considered too small for recycling.

How is Recycling Done

Step 5: Sorting

Workers manually sort non-recyclable products from mixed materials. Workers will also pull out any materials that are difficult for equipment operations.

As a result, we have sorted various products into specific materials. These products are now moving on a series of conveyors to specific places within the facility. Those products include:

  1. Newsprint
  2. Mixed Paper
  3. Cardboard
  4. Plastic

So, what else is left? Glass and metals.

How is Recycling Done (2)

Step 7: Metal Magnification

Giant magnets pull tin cans, iron containers, or steel containers from the conveyor belt. After this, another conveyor belt takes these containers to a specific area of the plant. Plastic, aluminum, and glass containers continue down the line.

Step 8: Screening

In this step, screens break the glass and separate it from plastic. A conveyor takes the broken glass to the glass processing department. This department breaks the glass down even further for additional processing or shipment out.

Step 9: Eddy Current Separator

This sorts aluminum from the mixed product through the use of an electric current. In addition, a conveyor takes the aluminum product to another area of the plant for processing.

Step 10: Sorting

More manual sorting by operators within the facility occurs here to gather any other products which are not recyclable.

At this point, plastic containers and small pieces of paper or film are all we have left.

Step 11: Optical Sorting

In this area, machines determine different types of unsorted materials. The machines identify different materials based on how light reflects from the material’s surface. This step determines the material type, color, and shape. Air pulls recognized material downward (or upward) onto another conveyor belt.

This step uses optical sorting machinery. One sorter will target paper. Another sorter will target plastic film. Upon completion of optical sorting, we should be left with just plastic containers. Therefore, each type of product or material has been sent to its own storage area. For instance, plastic bottles and containers are in one area. Similarly, cardboard is in another area.

So, what happens next?

Step 12: Baling

Baling machines operate with very high levels of pressure to compact materials into bales. Yes, like hay bales but made of different materials and square in shape. Wire wrapped around ensures the bales stay together.

Fun fact: These bales can weigh as much as 1 ton!

Baled product is ready for pickup and delivery to recyclers specialized in the materials. For an understanding of those processes, check out the links below:

As wild as it seems, we can trace back the invention of jet engines to 150 BC with the development of the aeolipile. And it is truly the aeolipile’s technology that allowed Dr. Hans von Ohain and Sir Frank Whittle to invent the jet engine as we know it today, albeit it separately and unbeknownst to each other. Additionally, it was Sir Frank Whittle’s jet engine that provided the United States of America the initial technology to build their own jet engines.

Sir Frank Whittle was an English aviation engineer as well as a test pilot in the Royal Air Force. It was in 1930 that he received his first patent on turbojet propulsion and, in just ten short years, he was able to construct, prove out, and secure his first contract of purchase for what was then called the W1 Whittle engine. It was May 1941 when the first historic flight with this new technology occurred.

This leads us to the fall of 1941 when a group of GE engineers in Lynn, Massachusetts received a secret present from King George VI via wooden crates on aircraft, as part of a contract from the U.S. War Department. Inside of the crates were parts of the first jet engine ever flown by the allies; a Whittle engine. The goal of this gift? To improve the handmade engine, bring it to mass production and help win the war.

Over 1000 people worked on the clandestine project, but only a select few knew the goal and what was being built. Those that did know were told they couldn’t talk to anyone about the work being performed. If they did, the consequence was death. As a result, they were called the “Hush-Hush Boys.

With a timeline of 6 months, the team of engineers and technicians were tasked with redesigning the jet engine for commercialization. The accomplishment was completed in five months and in the fall of 1942, the first official aircraft flight occurred, powered by two jet engines, producing a total of 2,600 pounds of thrust. 

Interested in learning more? I highly recommend the following.

  • Read here about Joseph Sorota, the last of the Hush-Hush boys and a key player in this engineering feat.
  • Find an image of the first US Jet Engine here as well as a magnificent video made by GE.
 

The Jet Story:

 

How It’s Made – Plastic

Plastic has been around for much longer than most of us know. In its earliest form (some say as early as 1600 B.C.), plastic was produced by Mesoamericans who harvested latex from the Panama Rubber Tree and processed it with liquid from the Morning Glory Vine. However, the production of plastic (as we now know it) started many years later when Polyvinyl Chloride (PVC) was invented during the 1930s. Since then, there have been other types of plastic discovered and invented with each having its own strengths and weaknesses, which ultimately determine the end use.

So, how is it made?

Step 1: Raw Material Extractions

Crude oil and natural gas are extracted (drilled) from the ground then transported to a refinery.

Step 2: Refining

During the refining process, these natural materials are turned into multiple products including ethane and propane (which are the foundation of plastics). The refining process is very similar to how gasoline is made. With the assistance of a high-temperature furnaces, as well as pressure, ethane and propane are broken down into smaller molecules creating ethylene and propylene.

Step 3: Polymerization

In this stage, catalysts (a.k.a. chemicals) are added into the process and bond individual molecules into a polymer. When heated, polymers are incredibly moldable, making them great for plastic products. There are two ways in which this polymerization process can occur, and each way makes its own polymer (or resin), and each resin has its own set of pros and cons (which ultimately determines the end product it’s used in). You can find resin types in the Resin Identification Codes (RICs) on plastic products. Resins include Polyethylene Terephthalate (PET), High-Density Polyethylene (HDPE), Polyvinyl Chloride (PVC) and Polystyrene (PS) among others. PET is the most commonly used plastic in the world.

Step 4: Nurdle Making

You read that right… now it’s on to nurdle making! Nurdles are little plastic pellets made from the resins created in the polymerization process. The process to do so is through melting and cooling operations. Once these lentil-sized pellets are produced, they are shipped from a petrochemical refining facility to manufacturing facilities where they are melted down and formed into a final product.

Step 5: Plastic Forming & Fabrication

Manufacturers compound, mix, and melt the plastic pellets with other ingredients to very specific recipes. When followed, these recipes determine the characteristics and properties of the plastic product. The melted plastic is then formed into shape by plastic forming machinery, which is determined by the application of the product.

Common Machinery Used to Form Rigid Plastic Products Includes:

  • Injection Molding
  • Extrusion Molding
  • Blow Molding
  • Compression Molding
  • Thermoforming
  • Rotational (Roto) Molding
  • Polymer Casting

If you are a plastics manufacturing company, or someone who has worked in a plastics manufacturing facility, you likely fully understand this process. If not, check out our blog page to see what else we can help you understand better. Regardless of where you rate your plastics knowledge, keep reading because did you know that FlexTrades can help you find the right people for your company and/or the right job for yourself, too, regardless of industry? Check us out online at FlexTrades.com to learn about all that we can do for you.

Candy Corn, that’s right, let’s talk about it. 

The sweet treat that divides the nation remains a mystery to the masses. Today, we’re going to tackle a few questions and figure out what candy corn is, how it’s created, and most importantly – where it goes after Halloween. 

Candy Corn Ingredients 

Candy corn has four main ingredients: 

  1. A “slurry” (as they call it) is similar to a buttercream. This is created with vanilla and sugars. 
  2. Food coloring is used to individually color each layer with yellow and red dyes. 
  3. The surprise ingredient – (and my personal favorite) marshmallow! Marshmallows are broken down into the slurry to create the light and fluffy texture of the candy corn itself. 
  4. Lastly, the confectioner’s glaze. This is made of honey, gelatin, sesame oil, sugar and salt. 

The Process 

The slurry is taken from a large industrial mixer and placed into three different containers; each container holds a designated layer of the candy corn: yellow, orange, and white.  This container continues to mix the solution so that the slurry maintains the same consistency.  

Wooden trays are dusted with dry cornstarch and then loaded onto the belt where each layer then fills the candy corn imprints. Due to the liquid nature of the material, there is no wait time in-between. Each layer is immediately placed on top of the other to dry. 

Each wooden tray holds 1300 corn pieces, and the machinery can produce 25 boards per minute! 

Once this process is complete and the candy corn is fully formed, they’re tossed into a rotating bin. In this rotating bin, technicians then toss the confectioner’s glaze onto the candy corn pieces until they’re evenly coated. The drying and coating process can take 4-5 days to complete.

Alright, so where does it go? 

Whether you love candy corn and are eager to find it year-round, or you can’t wait for candy corn to leave the shelves, you must wonder where the leftovers go. 

 

Last year, 35 million pounds of candy corn was produced across the United States. Only 70% of all candy corn is effectively sold before Halloween. Where does it all go then? 

 

We did some digging. 

Despite popular belief, “the trash” isn’t the main answer. 

In fact, the answer may surprise you. 

 

Once Halloween concludes, candy corn sales resume. The day after Halloween, candy corn is wiped from the shelves for highly discounted prices, and resellers will snatch up the leftovers. 

 

Candy corn stays fresh, if unopened, for around nine months! In fact, you can find candy corn year-round with online retailers like Amazon.  

 

Well, there you have it! This sweet treat has many layers – from its creation in the 1880s to mimic corn kernels for industrial times, to secret ingredients like marshmallows folded in to guarantee its shape. While candy corn is consumed by many year-round, Halloween is simply the best time to grab them in-store! 

On September 11th, 2001, the unthinkable happened when four airplanes were hijacked by militants associated with the extremist group al Qaeda. Of the four planes, two were flown into the twin towers of the World Trade Center in New York City.  Almost 3,000 people were killed during these terrorist attacks resulting in not only major US initiatives to fight terrorism but also paths of grief for all Americans. To recognize that grief and commemorate the victims of these 9/11 attacks, the U.S. Navy commissioned the USS New York (LPD-21), one of six Navy ships with New York in the name. This ship was different though. This ship, the USS New York (LPD-21) is a massive ship with 7.5 tons of steel recovered from the World Trade Center and Ground Zero. The steel is forged into its bow of the ship which is significant. It symbolizes the strength and resiliency of citizens as the ship sails forward, around the world. In fact, the motto of the USS New York (LPD-21) is “Strength forged through sacrifice. Never forget.”  

Although named after New York, the USS New York (LPD-21) was not constructed there. This mighty ship was constructed at the Northrop Grumman Ship Systems/Avondale Shipyard in Avondale, Louisiana.

Avondale Shipyard sold, now called Avondale Marine | WorkBoat 

The steel from Ground Zero was melted down at Amite Foundry and Machine in Amite, Louisiana. Not only was Amite Foundry and Machine close to the shipyard, they also had the capacity to do a job of this size. You could say the foundry specializes in jobs of this size. They’ve been known to turn down molding jobs for product weighing less than 1,000 pounds and are also known to make mold products that weigh as much 119,000 pounds. Depending upon the economy, Amite Foundry and Machine has a goal of producing 24 million pounds of metal per year. How did they make the bow stem? By melting a total of 24 tons of steel (7.5 tons of that being from Ground Zero) and molding it into the bow stem. With the bow being front and center of the ship, the steel from Ground Zero will lead the way everywhere it goes.  

With the bow completed, the rest of the ship was constructed. To construct a ship, the process starts with steel plates longer and wider than an average bus. These plates are cut into panels, bent on hydraulic presses to match the shape of the ship (or rolled to form the needed contour). Once formed, these panels are painted then welded together to form sub-assemblies of the ship. Once complete, the sub-assemblies are moved by large cranes and transport vehicles across the shipyard to the final build location of the ship. While all of this is occurring, the ship is also built out with internal mechanisms, equipment, cabling, etc. You can find a great video of this process (and really understand the sheer size of the process) here. Once the ship is close to being completed, it will be launched into the ocean where the final touches are added internally and it’s prepped to start sail.  

Final touches include:  

  • A New York City subway sign from the station beneath the World Trade Center  
  • A display case of hats and uniforms from first responders (including a firefighter’s helmet) 
  • A mural of the twin towers with the words Never Forget 
  • A banner with the many  names of the victims of 9/11 

A general timeline of the USS New York (LPD-21) is as follows:  

  1. August 2002: New York’s Governor (George e. Pataki) receive approval for his request that a United States surface warship bestow the name of New York to honor the victims of 9/11. 
  2. August 2003: Northrop Grumman Ship Systems is awarded the contract to build the USS New York (LPD-21). 
  3. September 2003: Amite Foundry and Machine melted steel down to form the bow stem of the ship.   
  4. March 2008: the USS New York (LPD-21) was christened in a ceremony at shipyard. 
  5. August 2009: the ship was delivered to the Navy. 
  6. October 2009: the ship set sail for Norfolk, Virginia.  
  7. November 2009: the ship passed the World Trade Center site for the first time. 
  8. November 2009: a commissioning ceremony took place in New York City.
     

From the very beginning to the very end, it took 7 years to build out this magnificent ship. There were many hands involved in the process including those who poured the metal at an unheard-of foundry in Louisiana to every welder who brought the plates together down to the last crew member to board the ship. This 9/11, let’s remember those who made this memorial ship possible in addition to the first. 

 

The prices at the pumps have been higher than ever recently. In fact, US gas prices were the highest they’ve ever been which has many people wondering why they’re high and if the prices will go down. Some are also wondering how it’s made. In reality, the two go hand-in-hand.  

 

Gasoline is made from crude oil (also known as petroleum). Crude oil (or petroleum) is a fossil fuel which means it is produced from the remains of plants and animals. These plants and animals lived millions of years ago and are covered by sediment which when exposed to weather, erosion, and other environmental factors, produces hydrocarbons.

 

Hydrocarbons can be liquid or gas. In this case, due to high pressure levels, the hydrocarbons formed under the ground are liquid hydrocarbons. These liquid hydrocarbons are what we know as crude oil (or petroleum). So, how does that become gasoline for vehicles? Let’s check it out!  

Step One 

When a crude oil source is found, drilling begins. Drills bore holes under the surface of the Earth in the area where crude oil has been found. Fun fact: these drills can go as far as one mile deep! The hole created by the drill acts as a well. With the addition of water into the soil, mud is created and this mud pushes cracked rock to the top of the hole at which point it is removed. This also ensures the crude oil stays below the surface. Once it has been determined the reservoir is ready for oil extraction, a pipe is inserted into the hole.  

Step Two  

This pipe is called a casing. This casing has holes in it that allow oil from the reservoir to enter the pipe and bring the oil to the surface of the Earth. Once recovered, the crude oil is stored in large tanks. From those tanks, oil is transported to a refinery via pipeline, ship, or tank cars on rail.  

Step Three 

At the refinery, crude oil is broken down into a variety of other materials to include gasoline and diesel fuel. In fact, gasoline was discovered when crude oil was originally refined to produce oil and kerosene for lamps, prior to the invention of electricity. With the addition of heat (ranging from roughly 60 degrees Fahrenheit to 1100+ degrees Fahrenheit), crude oil is distilled. Distillation is where we create the various byproducts of crude oil. The byproducts made are dependent upon carbon atoms. Remember, crude oil consists of liquid hydrocarbons. Hydrocarbons consist of carbon atoms that link together. These links of carbon atoms can vary in length and depending upon the length, will have different properties, characteristics, or behaviors. 

 

Examples of these chains: a chain with one carbon atom is known as methane. Kerosene consists of 12-15 atom atoms in one chain. The more atoms in one chain, the heavier the byproduct. 

Oil Distillation Process

Step Four 

Once distilled, the byproducts require further refining. Additional refining processes include catalytic cracking, coking, reforming, and alkylation. These are all fancy words that describe the different ways in which the crude oil coming out of the distillation column is further refined and purified. Once finished, it is sent to refinery storage tanks.  

Step Five  

This step is all about blending. From the refinery storage tanks, gasoline is sent to smaller blending tanks via tanker, barge, or pipeline. Here, gasoline is typically blended with ethanol. Blending is done to create different grades of gas. Remember, when you pull up to the pump at a gas station, you see a variety of options. Diesel, E87, E88, etc. These are the grades of gasoline. Different grades of gasoline are made to meet different performance requirements of a vehicle. An example of this is gasoline produced for use in the winter. To improve a vehicle’s ability to start with a cold engine, gasoline is blended to a consistency in which it will vaporize more easily

Step Six 

Once blended and ready for use, tanker trucks deliver the finished fuel to a gas station. The gasoline is stored in tanks underground at each gas station and from these tanks, are pumped up and out of the gas pump once you start it up. If you’re interested in more about that process, check out this article from howstuffworks.com. 

Flow of Crude oil and Gasoline to your pump

So, how does this all tie into the cost of gasoline prices? Well, it comes down to supply and demand. If supply is low but demand is high, prices are higher too. Therefore, if we are not drilling (onshore or offshore) for crude oil or if we are not receiving imported crude oil, we are not refining. If we aren’t refining, the supply is low while demand stays the same or increases. Of course, drilling is a hot button topic and when it comes to importing, supply chain and geopolitical events (which we’ve recently seen) will decrease supply. Thus, gasoline prices and gasoline production go hand-in-hand.

Manufacturing really is the culmination of science, technology, engineering, and mathematics (STEM). So, let’s go back to the classroom and talking science. More specifically, the science of static electricity.

What is an atom?

model of an atom

To understand static electricity, we need to understand atoms. Atoms are in everything around you; all physical items (except energy) are made of atoms. Particles make up atoms, the three largest particles being protons, electrons, and neutrons. Atoms also have a central core called a nucleus. We won’t go into all the details but if you’re interested, you can find out more information about atoms here.

Protons have a positive charge; electrons have a negative charge; and as you could have guessed, neutrons have a neutral charge. This means that if all things are made of atoms, then all things have charges. Normally, these charges (the electrons and protons) which are on the surface of an object, balance each other out. This is why most objects are electrically neutral. However, an imbalance in the charges occurs when two surfaces rub against each other, causing friction. This friction energizes electrons causing them to leave the surface of one object and move to the surface of another. This causes in imbalance of negative of positive charges on the objects’ surfaces. This imbalance in charges is Static Electricity.

It’s important to note that not all materials, objects, or surfaces have similar electrons. For instance, water and metal are conductors. Conductors have loosely bound electrons, and these tend to transfer more easily. On the other hand, plastic, rubber, and glass are insulators. The electrons of insulators are more tightly bound, meaning they don’t jump to other surfaces easily.

The Balloon & Your Head Trick

Let’s look at an example to understand this a little bit more. We’ll use a well-known ploy used to produce static electricity – a balloon rubbed on your head.

A balloon is made of rubber and rubber is an insulator. Therefore, the balloon has tightly bound electrons. However, human hair is not an insulator; it’s a conductor. This means the electrons from hair easily move. Rubbing a balloon on your head excites the electrons in your hair and they transfer from your hair to the surface of the rubber balloon. However, once the electrons land on the surface of the balloon, they do not move across the surface. This creates an imbalance in charges on the balloon’s surface. The balloon now has more electrons than before and becomes negatively charged (remember electrons have a negative charge). On the other hand, the hair has fewer electrons than before and is therefore more positively charged than before. This imbalance between positive and negative on the two surfaces (balloon and head) creates static electricity.

Static Electricity in Manufacturing

static electricity in manufacturing

While the balloon example is a fun example of static electricity, it’s not always fun. Static electricity can also be dangerous. In fact, manufacturing facilities of all types are concerned with static electricity. Manufacturers work with a variety of materials – some conductors, and some insulators. Due to this, and the relative ease of electron transfer between surfaces, electrostatic discharge (ESD – the “shock” you feel when static electricity occurs between your fingertip and another surface) is of utmost consideration. ESD can ignite flammable mixtures, damage electronic components, attract contaminants to cleanroom environments, and cause products to stick together. To combat this, manufacturers take additional steps to ensure the safety of their workers and the quality of their product. This includes ESD clothing, antistatic wrist straps and ground bracelets, ESD mats, and even zero charge cleaners and hand lotions.

Interested in learning more? You can find more How It’s Made articles on PMG’s website.